Skip to Content

Mathematics (BE01000041)

Module Wise Learning Videos

M-1M-2 M-3 M-4 M-5

Module 1: Basic Calculus

Sub Topic

G.L

H.L

H.L

P.M

Evaluation of Improper Integrals (Type-I and Type-II).

1.1

1.2

1.3

1

Beta Function (Definition and Properties).

1.1   1.1.1

1.2

1.3  1.3.1

1

Gamma Function (Definition and Properties).

1.1

1.2

1.3 1.3.1

1

Relationship between Beta and Gamma Functions.

1.1

1.2

1.3

1

Applications of Definite Integrals.

1.1

1.2

1.3

1

Volumes of Solids of Revolution.

1.1

1.2

1.3

1

Areas of Surfaces of Revolution.

1.1

1.2

1.3

1

Module 2: Single-variable Calculus (Differentiation)

Sub TopicG.L

H.L

H.L

P.M

​Taylor’s and Maclaurin’s theorem for a function of one variable

2.1

2.2 2.2.1

2.3

2​

Taylor’s and Maclaurin’s series of a function using statement of the theorems

2.1

2.2 2.2.1

2.3

2

Extreme values of functions

2.1

2.2

2.3

2

Indeterminate forms and L' Hospital's rule

2.1

2.2

2.3

2


Module 3: Sequences and series

Sub Topic

G.L

H.L

H.L

P.M

Convergence and Divergence of Sequences.

3.13.23.33

Convergence and Divergence of Infinite Series.

3.1

3.2

3.3

3

Tests for Convergence/Divergence:

3.1

3.2

3.3

3

Telescoping Series

3.1

3.2

3.3

3

Geometric Series Test

3.1

3.2

3.3

3

p-Series Test

3.1

3.2

3.3

3

integral Test

3.1

3.2

3.3

3

Comparison Test

3.1

3.2

3.3

3

Limit Comparison Test

3.1

3.2

3.3

3

D’Alembert’s Ratio Test

3.1

3.2

3.3

3

Cauchy’s Root Test

3.1

3.2 3.2.1

3.3

3

Alternating Series Test

3.1

3.2

3.3

3

Absolute vs. Conditional Convergence.

3.1

3.2

3.3

3

Power Series.

3.1

3.2

3.3

3

Radius and Interval of Convergence.

3.1

3.2

3.3

3


Module 4: Multivariable Calculus (Differentiation)

Sub Topic

G.L

H.L

H.L

P.M

Functions of Several Variables.

4.14.24.34

Limits and Continuity.

4.1

4.2

4.3

4

Partial Derivatives. (1-2 Order)

4.1

4.2 4.2.1

4.3

4

Mixed Derivative Theorem (Clairaut’s Theorem).

4.1

4.2

4.3

4

Total Derivative and Differentiability.

4.1

4.2

4.3

4

Chain Rule.

4.1

4.2

4.3

4

Gradient Vector.

4.1

4.2

4.3

4

Directional Derivatives.

4.1

4.2

4.3

4

Tangent Planes and Normal Lines to a Surface.

4.1

4.2

4.3

4

Local Extreme Values (Maxima, Minima).

4.1

4.2

4.3

4

Saddle Points.

4.1

4.2

4.3

4

Method of Lagrange Multipliers (for Constrained Optimization).

4.1

4.2

4.3

4


Module 5: Multivariable Calculus (Integration)

Sub Topic

G.L

H.L

H.L

P.M

Double Integrals (over Rectangular and General Regions).

5.15.25.35

Change of Order of Integration.

5.15.25.35

Double Integrals in Polar Coordinates.

5.15.25.35

Applications of Double Integrals (Area, Volume).

5.15.25.35

Triple Integrals (in Rectangular)

5.15.25.35

Triple Integrals (in Cylindrical)​

5.15.25.35

Triple Integrals (in Spherical Coordinates).

5.15.25.35

Applications of Triple Integrals (Volume, Mass, Center of Mass/Gravity).​

5.15.25.3
5

Module-5 All ST in One

Part-1Part-2

Part-3

5